Sains Malaysiana 53(8)(2024): 1819-1830

http://doi.org/10.17576/jsm-2024-5308-08

 

Penyediaan Aerogel Terubah Suai Polivinil Alkohol/Selulosa Mikrohablur Sebagai Pemisah Minyak/Air

(Preparation of Modified Polyvinyl Alcohol/Microcrystalline Cellulose Aerogel as Oil/Water Separator)

 

MUHAMMAD FARIS SAIFUL HISHAH, HASAN SAFAR & ISHAK AHMAD*

 

Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor, Malaysia

 

Received: 30 April 2024/Accepted: 1 July 2024

 

Abstrak

Insiden tumpahan minyak memberi kesan yang buruk terhadap alam sekitar, terutamanya kepada ekosistem hidupan akuatik yang seterusnya akan menjejaskan kesihatan manusia. Aerogel yang telah diubah suai mempunyai potensi untuk dijadikan sebagai bahan pemisah minyak dan air. Pengubahsuaian terhadap permukaan aerogel menjadikan sifatnya berubah kepada oleofilik dan hidrofobik yang amat membantu dalam proses resapan minyak sekali gus menghalang kemasukan air ke dalamnya. Penyelidikan ini dijalankan untuk menghasilkan aerogel PVA/MCC serta mengkaji potensinya sebagai pemisah air/minyak. Selain itu, kajian ini turut dilakukan untuk meneliti kesan kandungan MCC terhadap sifat hidrofobik dan mekanikal aerogel PVA/MCC. Aerogel dihasilkan dengan menggunakan kaedah pengeringan sejuk beku, kemudian, permukaannya telah dirawat dengan silana melalui kaedah pemendapan wap kimia (CVD) untuk memberikannya sifat hidrofobik dan oleofilik. Berdasarkan analisis FTIR, kumpulan berfungsi silanol (Si-OH) yang memberikan sifat hidrofobik kepada aerogel telah dikesan. Berdasarkan pemerhatian mikroskopi imbasan elektron (SEM), peningkatan kandungan MCC kepada komposit aerogel PVA dapat meningkatkan keporosan aerogel dan membuatkan permukaannya semakin kasar. Kemudian, melalui analisis sudut sentuh dan ujian mampatan pula, aerogel yang mengandungi 8%MCC mempunyai sudut sentuh tertinggi iaitu 143.13° dan kekakuan yang tinggi. Akan tetapi, melalui keputusan analisis jerapan fizikal, aerogel yang ditambah dengan 4%MCC mempunyai luas permukaan dan jumlah isi padu liang tertinggi iaitu 2.1302 m2/g dan 0.002277 cm3/g. Malah, ia juga mempunyai kapasiti penyerapan minyak yang tertinggi, iaitu 0.55 g/g. Berdasarkan keputusan yang diperoleh, penambahan MCC telah meningkatkan potensi komposit aerogel sebagai pemisah minyak dan air.

 

Kata kunci: Aerogel; MCC; penyerap minyak; PVA; sudut sentuh

 

Abstract

Oil spillage get tremendously effect on environment especially aquatic life that has consequences for human life. Modified aerogel has arisen potentially for separating oil-water due to changes on surfaces to hydrophobic properties which is very helpful in the process of oil diffusion as well as preventing the entry of water into it. This study was conducted to produce PVA/MCC aerogel and to study its potential as a oil/water separator. Aerogel is produced using a freeze-drying method, then, the surface has been treated with silane through a chemical vapor deposition method (CVD) to give it hydrophobic and oleophilic properties. Based on FTIR analysis, silanol functional groups (Si-OH) which provide hydrophobic properties to the aerogel were detected. In addition, observation under scanning electron microscopy (SEM) shows  increasing the MCC content can increase the porosity of the aerogel and make the surface rougher. The water contact angle show PVA/8%w/v MCC has the highest degree at 143.13° and high tensile strength. Otherwise, PVA/4%w/v MCC aerogel has the highest surface area and total pore volume at 2.1302 m2/g and 0.002277 cm3/g. The oil absorption test show PVA/4%w/v MCC aerogel has the highest absorption with 0.55 g/g. From these results, the addition of MCC has increased the potential of airgel composites as oil and water separators.

 

Keywords: Aerogel; contact angle; MCC; oil absorption; PVA

 

REFERENCES

Aney, S., Schettler, J., Schwan, M., Milow, B. & Rege, A. 2022. Insights into the micromechanics of organic aerogels based on experimental and modeling results. Advanced Engineering Materials 24(1): 2100095.

Aslam, S., Sekkat, A., Vergnes, H., Esvan, J., Pugliara, A., Samélor, D., Eshraghi, N., Vahlas, C., Auvergniot, J. & Caussat, B. 2023. A new route to apply nanometric alumina coating on powders by fluidized bed chemical vapor deposition. Chemical Engineering Journal Advances 16: 100554.

Atia, M.A., Smejkal, P., Gupta, V., Haddad, P.R. & Breadmore, M.C. 2023. Chemical vapour deposition in narrow capillaries: Electro-osmotic flow control in capillary electrophoresis. Analytica Chimica Acta 1280: 341847.

Chang, Q., Guo, S. & Zhang, X. 2023. Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications. Materials & Design 233: 112253.

El-Sakhawy, M. & Hassan, M.L. 2007. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers 67(1): 1-10.

Gong, X., Wang, Y., Zeng, H., Betti, M. & Chen, L. 2019. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustainable Chemistry and Engineering 7(13): 11118-11128.

Jiang, J., Zhang, Q., Zhan, X. & Chen, F. 2017. Renewable, biomass-derived, honeycomblike aerogel as a robust oil absorbent with two-way reusability. ACS Sustainable Chemistry and Engineering 5(11): 10307-10316.

Kathi, S. & Mahmoud, A.E.D., 2024. Trends in effective removal of emerging contaminants from wastewater: A comprehensive review. Desalination and Water Treatment 317: 100258.

Launer, P.J. 2013. Infrared analysis of organosilicon compounds: Spectra-structure correlations. In Silicon Compounds: Silanes & Silicones, 3rd. ed., edited by Arkles, B. & Larson, G.L. Morrisville: Gelest Inc. pp. 175-178.

Law, K.Y. 2014. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. Journal of Physical Chemistry Letters 5(4): 686-688.

Luo, Q., Huang, X., Gao, F., Li, D. & Wu, M. 2019. Preparation and characterization of high amylose corn starch- microcrystalline cellulose aerogel with high absorption. Materials 12(9): 1420.

Mahadik, D.B., Rao, A.V., Rao, A.P., Wagh, P.B., Ingale, S.V. & Gupta, S.C. 2011. Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. Journal of Colloid and Interface Science 356(1): 298-302.

Nowak, B., Bonora, M., Zuzga, M., Werner, L., Jackiewicz-Zagórska, A. & Gac, J.M. 2022. MTMS-based aerogel structure deposition on polypropylene fibrous filter - Surface layer effect and distribution control for improvement of oil aerosol separation properties. Journal of Environmental Chemical Engineering 10(5): 108410.

Ozen, E., Yildirim, N., Dalkilic, B. & Ergun, M.E. 2021. Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas: Ciencia y Tecnologia23: 1-10.

Rafieian, F., Hosseini, M., Jonoobi, M. & Yu, Q. 2018. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25(8): 4695-4710.

Rong, N., Xu, Z., Zhai, S., Zhou, L. & Li, J. 2021. Directional, super‐hydrophobic cellulose nanofiber/polyvinyl alcohol/montmorillonite aerogels as green absorbents for oil/water separation. IET Nanobiotechnology15(1): 135-146.

Seera, S.D.K., Kundu, D. & Banerjee, T. 2020. Physical and chemical crosslinked microcrystalline cellulose-polyvinyl alcohol hydrogel: Freeze–thaw mediated synthesis, characterization and in vitro delivery of 5-fluorouracil. Cellulose 27(11): 6521-6535.

Tai, M.H., Mohan, B.C., Yao, Z. & Wang, C.H. 2022. Superhydrophobic leached carbon Black/Poly(vinyl) alcohol aerogel for selective removal of oils and organic compounds from water. Chemosphere 286(Part 1): 131520.

Viswanathan, S., Pallikkara, A.A., Muhammed, F. & Kallingal, A. 2024. Graphitic carbon nitride based fluorine-free hydrophobic sponges for the mitigation of microplastics, oil spillage, and harmful microbial growth in water. Materials Today Sustainability 26: 100751.

Woignier, T., Hafidi Alaoui, A., Primera, J. & Phalippou, J. 2009. Mechanical properties of aerogels: Brittle or plastic solids?. Key Engineering Materials 391: 27-44.

Yoshimura, S., Sugimoto, S., Takeuchi, T., Murai, K. & Kiuchi, M. 2023. Low energy Si+, SiCH5+, or C+ beam injections to silicon substrates during chemical vapor deposition with dimethylsilane. Heliyon 9(8): e19002.

Zikalala, N.E., Azizi, S., Thema, F.T., Cloete, K.J., Zinatizadeh, A.A., Mokrani, T., Mketo, N. & Maaza, M.M., 2024. Modification of graphene-based nanomaterials with gamma irradiation as an eco-friendly approach for diverse applications: A review. FlatChem. 45: 100662.

Zhang, H. & Zhang, J. 2020. The preparation of novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs) aerogel for solvents adsorption application. Journal of Colloid and Interface Science 569: 254-266.

Zheng, Q., Cai, Z. & Gong, S. 2014. Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. Journal of Materials Chemistry A 2(9): 3110-3118.

 

*Corresponding author; email: gading@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next