Sains Malaysiana 53(8)(2024): 1819-1830
http://doi.org/10.17576/jsm-2024-5308-08
Penyediaan Aerogel Terubah Suai
Polivinil Alkohol/Selulosa Mikrohablur Sebagai Pemisah Minyak/Air
(Preparation of Modified Polyvinyl
Alcohol/Microcrystalline Cellulose Aerogel as Oil/Water Separator)
MUHAMMAD FARIS SAIFUL HISHAH, HASAN SAFAR & ISHAK AHMAD*
Jabatan Sains
Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Received: 30 April 2024/Accepted: 1 July 2024
Abstrak
Insiden tumpahan minyak memberi kesan yang buruk terhadap alam sekitar, terutamanya kepada ekosistem hidupan akuatik yang seterusnya akan menjejaskan kesihatan manusia. Aerogel yang telah diubah suai mempunyai potensi untuk dijadikan sebagai bahan pemisah minyak dan air. Pengubahsuaian terhadap permukaan aerogel menjadikan sifatnya berubah kepada oleofilik dan hidrofobik yang amat membantu dalam proses resapan minyak sekali gus menghalang kemasukan air ke dalamnya. Penyelidikan ini dijalankan untuk menghasilkan aerogel PVA/MCC serta mengkaji potensinya sebagai pemisah air/minyak. Selain itu, kajian ini turut dilakukan untuk meneliti kesan kandungan MCC terhadap sifat hidrofobik dan mekanikal aerogel PVA/MCC. Aerogel dihasilkan
dengan menggunakan kaedah pengeringan sejuk beku, kemudian, permukaannya telah dirawat dengan silana melalui kaedah pemendapan wap kimia (CVD) untuk memberikannya sifat hidrofobik dan oleofilik. Berdasarkan analisis FTIR, kumpulan berfungsi
silanol (Si-OH) yang memberikan sifat hidrofobik kepada aerogel
telah dikesan. Berdasarkan pemerhatian mikroskopi imbasan elektron (SEM), peningkatan kandungan MCC kepada komposit aerogel PVA dapat meningkatkan keporosan aerogel dan membuatkan permukaannya semakin kasar. Kemudian, melalui analisis sudut sentuh dan ujian mampatan pula, aerogel yang mengandungi 8%MCC mempunyai sudut sentuh tertinggi iaitu 143.13° dan kekakuan yang tinggi. Akan tetapi, melalui keputusan analisis jerapan fizikal, aerogel yang ditambah dengan 4%MCC mempunyai luas permukaan dan jumlah isi padu liang tertinggi iaitu 2.1302 m2/g dan 0.002277 cm3/g. Malah, ia juga mempunyai kapasiti penyerapan minyak yang tertinggi, iaitu 0.55 g/g. Berdasarkan keputusan yang diperoleh, penambahan MCC telah meningkatkan potensi komposit aerogel sebagai pemisah minyak dan air.
Kata kunci: Aerogel; MCC; penyerap minyak; PVA; sudut sentuh
Abstract
Oil spillage
get tremendously effect on environment especially aquatic life that has
consequences for human life. Modified aerogel has arisen potentially for
separating oil-water due to changes on surfaces to hydrophobic properties which is very helpful in the process of oil diffusion as well as preventing the
entry of water into it. This study was conducted to produce PVA/MCC aerogel and
to study its potential as a oil/water separator. Aerogel is produced using a
freeze-drying method, then, the surface has been treated with silane through a
chemical vapor deposition method (CVD) to give it hydrophobic and oleophilic
properties. Based on FTIR analysis, silanol functional groups (Si-OH) which
provide hydrophobic properties to the aerogel were detected. In addition,
observation under scanning electron microscopy (SEM) shows increasing the MCC content can increase the
porosity of the aerogel and make the surface rougher. The water contact angle
show PVA/8%w/v MCC has the highest degree at 143.13° and high tensile strength. Otherwise,
PVA/4%w/v MCC aerogel has the highest surface area and total pore volume at 2.1302 m2/g and 0.002277 cm3/g. The oil absorption test show PVA/4%w/v MCC aerogel has the highest
absorption with 0.55 g/g. From these results, the addition of
MCC has increased the potential of airgel composites as oil and water
separators.
Keywords: Aerogel; contact angle; MCC; oil absorption; PVA
REFERENCES
Aney, S., Schettler, J., Schwan, M., Milow, B. & Rege, A. 2022.
Insights into the micromechanics of organic aerogels based on experimental and modeling results. Advanced Engineering Materials 24(1):
2100095.
Aslam, S., Sekkat, A., Vergnes, H., Esvan, J., Pugliara, A., Samélor, D., Eshraghi, N., Vahlas, C., Auvergniot, J. & Caussat, B.
2023. A new route to apply nanometric alumina coating
on powders by fluidized bed chemical vapor deposition. Chemical Engineering Journal Advances 16: 100554.
Atia, M.A., Smejkal, P., Gupta,
V., Haddad, P.R. & Breadmore, M.C.
2023. Chemical vapour deposition in narrow capillaries: Electro-osmotic flow
control in capillary electrophoresis. Analytica Chimica Acta 1280:
341847.
Chang, Q., Guo, S. &
Zhang, X. 2023. Radiation shielding polymer composites: Ray-interaction mechanism,
structural design, manufacture and biomedical applications. Materials &
Design 233: 112253.
El-Sakhawy, M. &
Hassan, M.L. 2007. Physical and mechanical properties of microcrystalline
cellulose prepared from agricultural residues. Carbohydrate Polymers 67(1):
1-10.
Gong, X., Wang, Y., Zeng, H., Betti,
M. & Chen, L. 2019. Highly porous, hydrophobic, and compressible cellulose
nanocrystals/poly(vinyl alcohol) aerogels as
recyclable absorbents for oil-water separation. ACS Sustainable Chemistry
and Engineering 7(13): 11118-11128.
Jiang, J., Zhang, Q., Zhan, X. & Chen, F. 2017.
Renewable, biomass-derived, honeycomblike aerogel as
a robust oil absorbent with two-way reusability. ACS Sustainable Chemistry
and Engineering 5(11): 10307-10316.
Kathi, S. & Mahmoud, A.E.D., 2024. Trends in effective removal of
emerging contaminants from wastewater: A comprehensive review. Desalination
and Water Treatment 317: 100258.
Launer, P.J. 2013. Infrared analysis of organosilicon compounds:
Spectra-structure correlations. In Silicon Compounds: Silanes & Silicones, 3rd. ed., edited by Arkles,
B. & Larson, G.L. Morrisville: Gelest Inc. pp.
175-178.
Law, K.Y. 2014. Definitions for hydrophilicity,
hydrophobicity, and superhydrophobicity: Getting the
basics right. Journal of Physical Chemistry Letters 5(4): 686-688.
Luo, Q., Huang, X., Gao, F., Li, D. & Wu, M.
2019. Preparation and characterization of high amylose corn starch-
microcrystalline cellulose aerogel with high absorption. Materials 12(9):
1420.
Mahadik, D.B., Rao, A.V., Rao, A.P., Wagh, P.B., Ingale, S.V. & Gupta, S.C. 2011. Effect of
concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of
silica aerogels. Journal of Colloid and Interface Science 356(1): 298-302.
Nowak, B., Bonora, M., Zuzga, M., Werner, L., Jackiewicz-Zagórska,
A. & Gac, J.M. 2022. MTMS-based aerogel structure
deposition on polypropylene fibrous filter - Surface layer effect and
distribution control for improvement of oil aerosol separation properties. Journal
of Environmental Chemical Engineering 10(5): 108410.
Ozen, E., Yildirim, N., Dalkilic,
B. & Ergun, M.E. 2021. Effects of microcrystalline cellulose on some
performance properties of chitosan aerogels. Maderas: Ciencia y Tecnologia23:
1-10.
Rafieian, F., Hosseini, M., Jonoobi, M. & Yu, Q.
2018. Development of hydrophobic nanocellulose-based
aerogel via chemical vapor deposition for oil
separation for water treatment. Cellulose 25(8): 4695-4710.
Rong, N., Xu, Z., Zhai, S., Zhou, L. & Li, J.
2021. Directional, super‐hydrophobic cellulose nanofiber/polyvinyl
alcohol/montmorillonite aerogels as green absorbents for oil/water separation. IET Nanobiotechnology15(1): 135-146.
Seera, S.D.K., Kundu, D. & Banerjee, T. 2020.
Physical and chemical crosslinked microcrystalline
cellulose-polyvinyl alcohol hydrogel: Freeze–thaw mediated synthesis,
characterization and in vitro delivery of 5-fluorouracil. Cellulose 27(11):
6521-6535.
Tai, M.H., Mohan, B.C., Yao, Z. & Wang, C.H.
2022. Superhydrophobic leached carbon
Black/Poly(vinyl) alcohol aerogel for selective removal of oils and organic
compounds from water. Chemosphere 286(Part 1): 131520.
Viswanathan, S., Pallikkara, A.A., Muhammed, F. & Kallingal, A. 2024. Graphitic carbon nitride based
fluorine-free hydrophobic sponges for the mitigation of microplastics,
oil spillage, and harmful microbial growth in water. Materials Today
Sustainability 26: 100751.
Woignier, T., Hafidi Alaoui,
A., Primera, J. & Phalippou,
J. 2009. Mechanical properties of aerogels: Brittle or plastic solids?. Key Engineering Materials 391: 27-44.
Yoshimura, S., Sugimoto, S., Takeuchi, T., Murai, K. & Kiuchi, M. 2023.
Low energy Si+, SiCH5+, or C+ beam
injections to silicon substrates during chemical vapor deposition with dimethylsilane. Heliyon 9(8): e19002.
Zikalala, N.E., Azizi, S., Thema,
F.T., Cloete, K.J., Zinatizadeh,
A.A., Mokrani, T., Mketo,
N. & Maaza, M.M., 2024. Modification of
graphene-based nanomaterials with gamma irradiation as an eco-friendly approach
for diverse applications: A review. FlatChem.
45: 100662.
Zhang, H. & Zhang, J. 2020. The preparation of
novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs)
aerogel for solvents adsorption application. Journal of Colloid and
Interface Science 569: 254-266.
Zheng, Q., Cai, Z. & Gong, S. 2014. Green
synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. Journal of Materials Chemistry A 2(9): 3110-3118.
*Corresponding
author; email: gading@ukm.edu.my
|